01 February 1996 • page 33
Physics Today 49, 2, 33 (1996); https://doi.org/10.1063/1.881487
Newtonian physics began with an attempt to make precise predictions about natural phenomena, predictions that could be accurately checked by observation and experiment. The goal was to understand nature as a deterministic, “clockwork” universe. The application of probability distributions to physics developed much more slowly. Early uses of probability arguments focused on distributions with well‐defined means and variances. The prime example was the Gaussian law of errors, in which the mean traditionally represented the most probable value from a series of repeated measurements of a fixed quantity, and the variance was related to the uncertainty of those measurements.
  1. 1. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982). Google Scholar
  2. 2. A. Einstein, Annalen der Physik 17, 549 (1905). Google ScholarCrossref
  3. 3. Lévy Flights and Related Topics in Physics, M. Shlesinger, G. Zaslavsky, U. Frisch, Eds., Springer, Berlin (1995). Google Scholar
  4. 4. T. Geisel, J. Nierwetberg, A. Zacherl, Phys. Rev. Lett. 54, 616 (1985). Google ScholarCrossref
  5. 5. M. Shlesinger, B. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987). Google ScholarCrossref
    M. Shlesinger, J. Klafter, Y. M. Wong, J. Stat. Phys. 27, 499 (1982). , Google ScholarCrossref
  6. 6. F. Hayot, Phys. Rev. A. 43, 806 (1991). Google ScholarCrossref
  7. 7. A. Ott, J. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990). Google ScholarCrossref
    J. Bouchaud, A. Georges, Phys. Reports 195, 127 (1980). , Google ScholarCrossref
  8. 8. J. Viecelli, Phys. Fluids A 5, 2484 (1993). Google ScholarCrossref
  9. 9. T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 3975 (1993). Google ScholarCrossref
  10. 10. G. Zumofen, J. Klafter, Chem. Phys. Lett. 219, 303 (1994). Google ScholarCrossref
  11. 11. T. Geisel, A. Zacherl, G. Radons, Z. Phys. B. 71, 117 (1988). Google ScholarCrossref
  12. 12. A. Chernikov, B. Petrovichev, A. Rogalsky, R. Sagdeev, G. Zaslavsky, Phys. Lett. A 144, 127 (1990). Google ScholarCrossref
  13. 13. D. Chaikovsky, G. Zaslavsky, Chaos 1, 463 (1991). Google ScholarCrossref
  14. 14. I. Aranson, M. Rabinovich, L. Tsimring, Phys. Lett. A 151, 523 (1990). Google ScholarCrossref
  15. 15. J. Klafter, G. Zumofen, Phys. Rev. E 49, 4873 (1994). Google ScholarCrossref
  16. 16. M. Shlesinger, G. Zaslavsky, J. Klafter, Nature 363, 31 (1993). Google ScholarCrossref
  17. 17. R. Ramashanker, D. Berlin, J. Gollub, Phys. Fluids A 2, 1955 (1980). Google ScholarCrossref
  18. 18. O. Baychuk, B. O'Shaughnessy, Phys. Rev. Lett. 74, 1795 (1985). Google ScholarCrossref
    S. Stapf, R. Kimmich, R. Seitter, Phys. Rev. Lett. 75, 2855 (1995). , Google ScholarCrossref
  19. 19. G. Zimbardo, P. Veltrei, G. Basile, S. Principato, Phys. Plasma 2, 2653 (1995). Google ScholarCrossref
    R. Balescu, Phys. Rev. E 51, 4807 (1995). , Google ScholarCrossref
  20. 20. A. Carasso, in Mathematical Methods in Medical Imaging II, SPIE vol. 2035 (1993), p. 255. Google Scholar
  21. 21. R. Fleischmann, T. Geisel, R. Ketzmerick, Europhys. Lett. 25, 219 (1994). Google ScholarCrossref
  22. © 1996 American Institute of Physics.