Abstract
Newtonian physics began with an attempt to make precise predictions about natural phenomena, predictions that could be accurately checked by observation and experiment. The goal was to understand nature as a deterministic, “clockwork” universe. The application of probability distributions to physics developed much more slowly. Early uses of probability arguments focused on distributions with well‐defined means and variances. The prime example was the Gaussian law of errors, in which the mean traditionally represented the most probable value from a series of repeated measurements of a fixed quantity, and the variance was related to the uncertainty of those measurements.
REFERENCES
- 1. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982). Google Scholar
- 2. A. Einstein, Annalen der Physik 17, 549 (1905). Google ScholarCrossref
- 3. Lévy Flights and Related Topics in Physics, M. Shlesinger, G. Zaslavsky, U. Frisch, Eds., Springer, Berlin (1995). Google Scholar
- 4. T. Geisel, J. Nierwetberg, A. Zacherl, Phys. Rev. Lett. 54, 616 (1985). Google ScholarCrossref
- 5. M. Shlesinger, B. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987). Google ScholarCrossref
M. Shlesinger, J. Klafter, Y. M. Wong, J. Stat. Phys. 27, 499 (1982). , Google ScholarCrossref - 6. F. Hayot, Phys. Rev. A. 43, 806 (1991). Google ScholarCrossref
- 7. A. Ott, J. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990). Google ScholarCrossref
J. Bouchaud, A. Georges, Phys. Reports 195, 127 (1980). , Google ScholarCrossref - 8. J. Viecelli, Phys. Fluids A 5, 2484 (1993). Google ScholarCrossref
- 9. T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 3975 (1993). Google ScholarCrossref
- 10. G. Zumofen, J. Klafter, Chem. Phys. Lett. 219, 303 (1994). Google ScholarCrossref
- 11. T. Geisel, A. Zacherl, G. Radons, Z. Phys. B. 71, 117 (1988). Google ScholarCrossref
- 12. A. Chernikov, B. Petrovichev, A. Rogalsky, R. Sagdeev, G. Zaslavsky, Phys. Lett. A 144, 127 (1990). Google ScholarCrossref
- 13. D. Chaikovsky, G. Zaslavsky, Chaos 1, 463 (1991). Google ScholarCrossref
- 14. I. Aranson, M. Rabinovich, L. Tsimring, Phys. Lett. A 151, 523 (1990). Google ScholarCrossref
- 15. J. Klafter, G. Zumofen, Phys. Rev. E 49, 4873 (1994). Google ScholarCrossref
- 16. M. Shlesinger, G. Zaslavsky, J. Klafter, Nature 363, 31 (1993). Google ScholarCrossref
- 17. R. Ramashanker, D. Berlin, J. Gollub, Phys. Fluids A 2, 1955 (1980). Google ScholarCrossref
- 18. O. Baychuk, B. O'Shaughnessy, Phys. Rev. Lett. 74, 1795 (1985). Google ScholarCrossref
S. Stapf, R. Kimmich, R. Seitter, Phys. Rev. Lett. 75, 2855 (1995). , Google ScholarCrossref - 19. G. Zimbardo, P. Veltrei, G. Basile, S. Principato, Phys. Plasma 2, 2653 (1995). Google ScholarCrossref
R. Balescu, Phys. Rev. E 51, 4807 (1995). , Google ScholarCrossref - 20. A. Carasso, in Mathematical Methods in Medical Imaging II, SPIE vol. 2035 (1993), p. 255. Google Scholar
- 21. R. Fleischmann, T. Geisel, R. Ketzmerick, Europhys. Lett. 25, 219 (1994). Google ScholarCrossref
- © 1996 American Institute of Physics.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.



